





CMA. TCA Srinivasa Prasad +91 947 770 2227 10996tcasp@icmaim.com www.tcasprasad.in







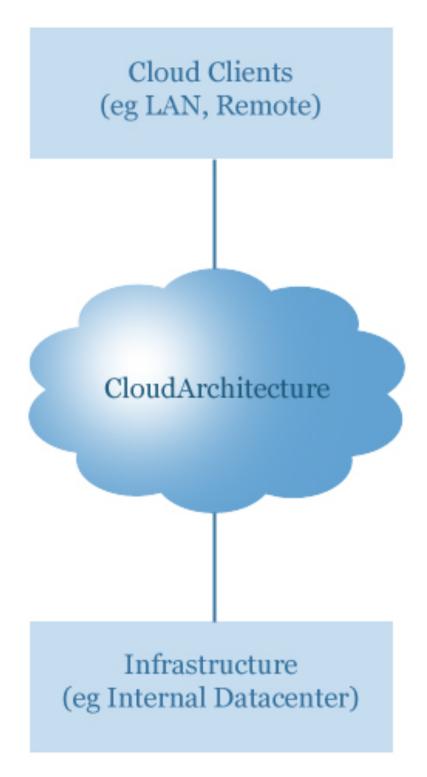
- Cloud Computing is a general term used to describe a new class of network based computing that takes place over the Internet,
  - basically a step on from Utility Computing
  - a collection/group of integrated and networked hardware,
     software and Internet infrastructure (called a platform).
  - Using the Internet for communication and transport provides hardware, software and networking services to clients
- These platforms hide the complexity and details of the underlying infrastructure from users and applications by providing very simple graphical interface or API (Applications Programming Interface).



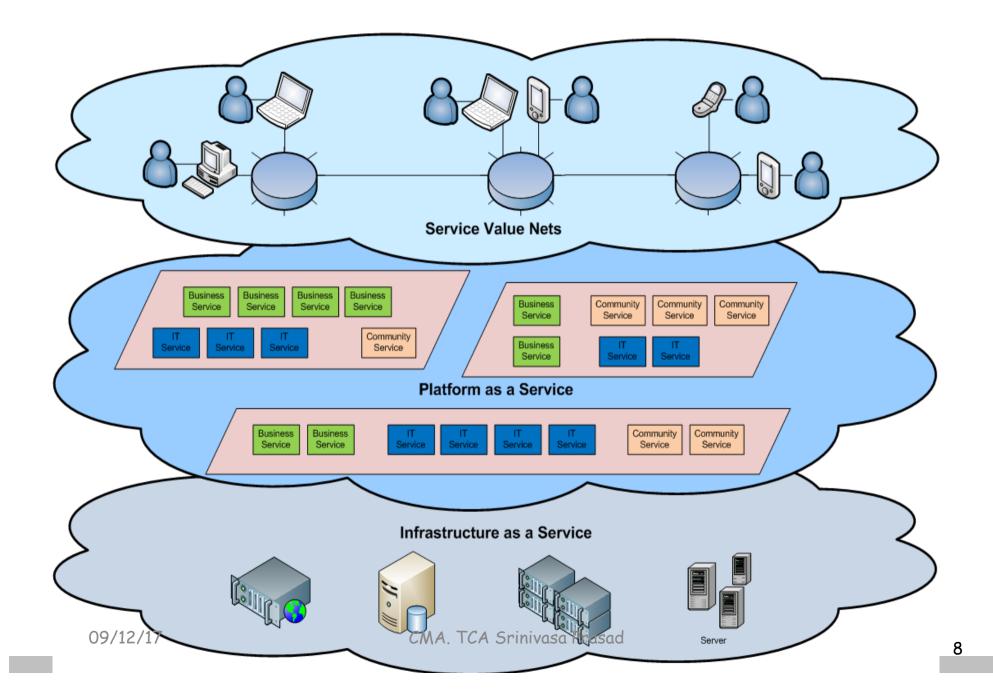
- In addition, the platform provides on demand services, that are always on, anywhere, anytime and any place.
- Pay for use and as needed, elastic
  - scale up and down in capacity and functionalities
- The hardware and software services are available to
  - general public, enterprises, corporations and businesses markets



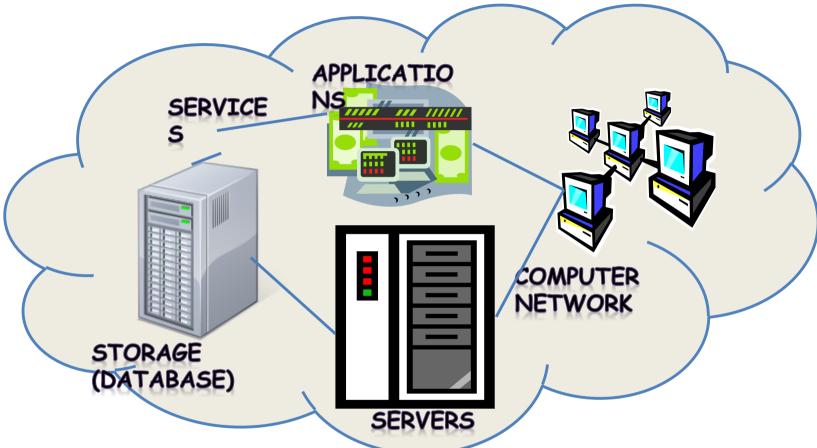
 Cloud computing is an umbrella term used to refer to Internet based development and services


- A number of characteristics define cloud data, applications services and infrastructure:
  - Remotely hosted: Services or data are hosted on remote infrastructure.
  - **Ubiquitous**: Services or data are available from anywhere.
  - Commodified: The result is a utility computing model similar to traditional that of traditional utilities, like gas and electricity - you pay for what you would want!




# Architecture

- The architecture behind cloud computing is a massive network.
- The cloud computing infrastructure consists of reliable services.
- The Cloud appears as a single point of access for all the computing needs of consumers.














- Shared pool of configurable computing resources
- On-demand network access
- Provisioned by the Service Provider



#### **Common Characteristics:**

Massive Scale Resilient Computing

Homogeneity Geographic Distribution

Virtualization Service Orientation

Low Cost Software Advanced Security

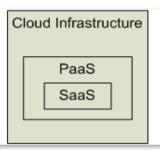
### **Essential Characteristics:**

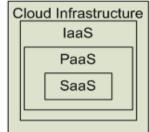
**On Demand Self-Service** 

Broad Network Access Rapid Elasticity

Resource Pooling Measured Service




# Software as a Service (SaaS)


# Platform as a Service (PaaS)

# Infrastructure as a Service (laaS)

SalesForce CRM LotusLive





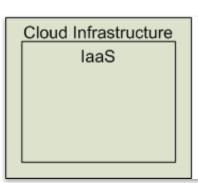


Software as a Service (SaaS) Providers Applications








Platform as a Service (PaaS)

Deploy customer

created Applications

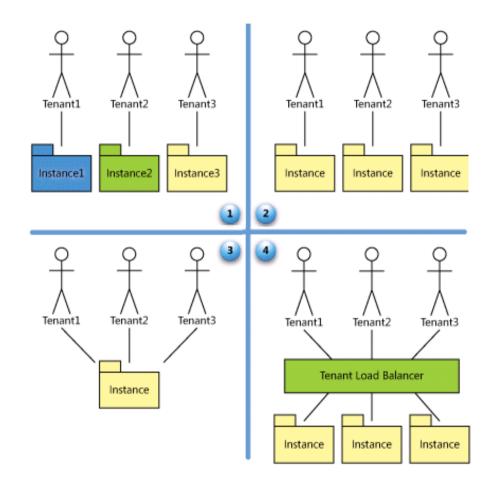






Infrastructure as a Service (laaS)

Rent Processing, storage, N/W capacity & computing resources




Level 1: Ad-Hoc/Custom – One Instance per customer

Level 2: Configurable per customer

Level 3: configurable & Multi-Tenant-Efficient

Level 4: Scalable, Configurable & Multi-Tenant-Efficient





| Application Service<br>(SaaS) | MS Live/ExchangeLabs, IBM,<br>Google Apps; Salesforce.com<br>Quicken Online, Zoho, Cisco |
|-------------------------------|------------------------------------------------------------------------------------------|
| Application Platform          | Google App Engine, Mosso,<br>Force.com, Engine Yard,<br>Facebook, Heroku, AWS            |
| Server Platform               | 3Tera, EC2, SliceHost,<br>GoGrid, RightScale, Linode                                     |
| Storage Platform              | Amazon 53, Dell, Apple,                                                                  |



|                           | Services    | Description                                                                                                                 |
|---------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|
|                           | Services    | Services – Complete business services such as PayPal, OpenID, OAuth, Google Maps, Alexa                                     |
| Application<br>Focused    | Application | Application – Cloud based software that eliminates the need for local installation such as Google Apps, Microsoft Online    |
|                           | Development | Development – Software development platforms used to build custom cloud based applications (PAAS & SAAS) such as SalesForce |
| Infrastructure<br>Focused | Platform    | Platform – Cloud based platforms, typically provided using virtualization, such as Amazon ECC, Sun Grid                     |
|                           | Storage     | Storage – Data storage or cloud based NAS such as CTERA, iDisk, CloudNAS                                                    |
|                           | Hosting     | Hosting – Physical data centers such as those run by IBM, HP, NaviSite, etc.                                                |
|                           |             |                                                                                                                             |



- The "no-need-to-know" in terms of the underlying details of infrastructure, applications interface with the infrastructure via the APIs.
- The "flexibility and elasticity" allows these systems to scale up and down at will
  - utilising the resources of all kinds
    - CPU, storage, server capacity, load balancing, and databases
- The "pay as much as used and needed" type of utility computing and the "always on!, anywhere and any place" type of network-based computing.



- Cloud are transparent to users and applications, they can be built in multiple ways
  - branded products, proprietary open source, hardware or software, or just off-the-shelf PCs.
- In general, they are built on clusters of PC servers and off-the-shelf components plus
   Open Source software combined with inhouse applications and/or system software.



- SaaS is a model of software deployment where an application is hosted as a service provided to customers across the Internet.
- Saas alleviates the burden of software maintenance/support
  - but users relinquish control over software versions and requirements.
- Terms that are used in this sphere include
  - Platform as a Service (PaaS) and
  - Infrastructure as a Service (laaS)



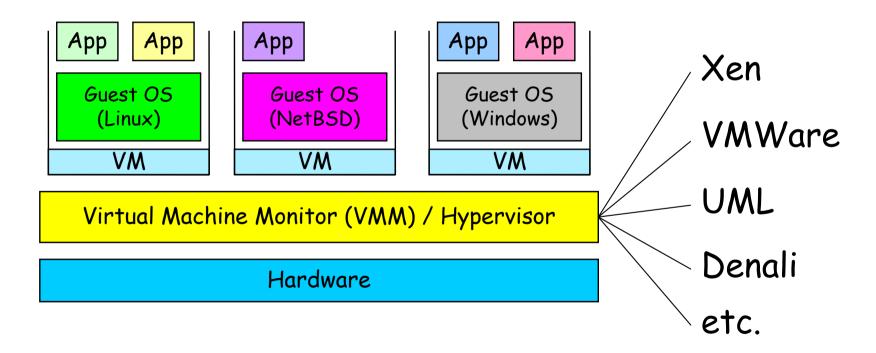
### Virtual workspaces:

- An abstraction of an execution environment that can be made dynamically available to authorized clients by using well-defined protocols,
- Resource quota (e.g. CPU, memory share),
- Software configuration (e.g. O/S, provided services).
- Implement on Virtual Machines (VMs):
  - Abstraction of a physical host machine,

 Hypervisor intercepts and emulates instructions from VMs, and allows management of VMs,

VMWare, Xen, etc.

### Provide infrastructure API:


Plug-ins to hardware/support structures

AppAppAppOSOSOSHypervisorHardware

Virtualized Stack



 VM technology allows multiple virtual machines to run on a single physical machine.



*Performance*: Para-virtualization (e.g. Xen) is very close to raw physical performance!



# Advantages of virtual machines:

- Run operating systems where the physical hardware is unavailable,
- Easier to create new machines, backup machines, etc.,
- Software testing using "clean" installs of operating systems and software,
- Emulate more machines than are physically available,
- Timeshare lightly loaded systems on one host,
- Debug problems (suspend and resume the problem machine),
- Easy migration of virtual machines (shutdown needed or not).
- Run legacy systems!



- Cloud computing enables companies and applications, which are system infrastructure dependent, to be infrastructure-less.
- By using the Cloud infrastructure on "pay as used and on demand", all of us can save in capital and operational investment!
- Clients can:
  - Put their data on the platform instead of on their own desktop PCs and/or on their own servers.
  - They can put their applications on the cloud and use the servers within the cloud to do processing and data manipulations etc.



# Why is it becoming a Big Deal:

- Using high-scale/low-cost providers,
- Any time/place access via web browser,
- Rapid scalability; incremental cost and load sharing,
- Can forget need to focus on local IT.

#### Concerns:

- Performance, reliability, and SLAs,
- Control of data, and service parameters,
- Application features and choices,
- Interaction between Cloud providers,
- No standard API mix of SOAP and REST!
- Privacy, security, compliance, trust...





Amazon Elastic Compute Cloud (Amazon EC2) - Beta





















#### Infrastructure Services

#### Storage

- Amazon S3 Amazon EBS
- CTERA Portal Mosso Cloud Files
- Nirvanix

#### Compute

- Amazon EC2 Serve Path GoGrid
- Elastra Mosso Cloud Servers
- Joyent Accelerators
- **AppNexus** Flexiscale
- Elastichosts
- Hosting.com CloudNine
- Terramark GridLayer
- ITRICITY LayeredTech

#### Services Management

- RightScale enStratus
- Scalr
- CohesiveFT Kaavo
- CloudStatus
- Ylastic
- Dynect
- CloudFoundry
  - NewRelic

#### Cloud42

# CLOUD

TAXONOMY

#### Cloud Software

#### Data Compute

- 10Gen MongoDB Globus Toolkit -Oracle Coherence Xeround Gemstone Gemfire Apache CouchDb
  - Beowulf Sun Grid Engine Hadoop

Xeround -

- Apache HBase OpenCloud Hypertable TerraCotta Gigaspaces -DataSynapse -
- Tokyo Cabinet Cassandra memcached -

#### File Storage

**Appliances** EMC Atmos -PingIdentity -ParaScale Symplified -Zmamda rPath -CTERA -Vordel \_

#### Cloud Management

- 3Tera App Logic
- OpenNebula Open.ControlTier
- **Enomaly Enomalism**
- Altor Networks VMware vSphere
- OnPathTech
- CohesiveFT VPN Cubed Hyperic
  - Eucalyptus
- Reductive Lbs Puppet
  - OpenQRM Appistry -

Desktop

Zoho

Productivity

#### **Platform Services**

#### General

000

- Purpose - Force.com Etelos
- LongJump
- AppJet Rollbase
- Bungee Labs Connect Google App Engine
- **Engine Yard** Caspio
- Qrimp MS Azure Services Platform Mosso Cloud Sites

09/12 OpenCrowd

#### Business

- Intelligence - Aster DB Quantivo
- Cloud9 Analytics Blink Logic K2 Analytics - LogiXML
- Oco - Panorama - PivotLink - Sterna ColdLight Neuron

– Vertica

OpSource Connect Cast Iron Microsoft BizTalk Services gnip SnapLogic SaaS Solution Packs - Infobright Appian Anywhere HubSpan Informatica On-Demand

Integration

Amazon SOS

OnDemand

SnapLogic

Boomi

MuleSource Mule

### Development &

- Testing Mercury
- SOASTA
- Aptana LoadStorm
- Google BigTable Amazon SimpleDB - FathomDB Microsoft SDS

- Keynote Systems
- SkyTap Collabnet
- Dynamsoft Database

### **Software Services**

| Billing        | Financials |
|----------------|------------|
| Aria Systems — | Concur —   |
| eVapt –        | Xero _     |
| OpSource -     | Workday _  |
| Redi2 -        | Beam4d _   |
| Zuora          |            |

Content

Management

Clickability -

SpringCM -

CrownPoint -

Social

Ning -

Networks

| Concur -  | [ |
|-----------|---|
| Xero _    | - |
| Workday _ |   |
| Beam4d _  |   |
|           |   |



Backup &

JungleDisk-

Zmanda Cloud

Recovery

Mozy-

Backup

OpenRSM -

Syncplicity -









Demand

### Document Management

NetDocuments -Questys -DocLanding Aconex **Xythos** Knowledge TreeLive SpringCM -

CMA. TCA Srinivasa Prasa mitive -Zembly -

Human

Taleo -

iCIMS\_

Collaboration

Box.net -

Resources

Workday -



- Several large Web companies are now exploiting the fact that they have data storage capacity that can be hired out to others.
  - allows data stored remotely to be temporarily cached on desktop computers, mobile phones or other Internetlinked devices.
- Amazon's Elastic Compute Cloud (EC2) and Simple Storage Solution (S3) are well known examples
  - Mechanical Turk



- Unlimited Storage.
- Pay for what you use:
  - \$0.20 per GByte of data transferred,
  - \$0.15 per GByte-Month for storage used,
  - Second Life Update:
    - 1TBytes, 40,000 downloads in 24 hours \$200,





- Amazon Elastic Compute Cloud (EC2):
  - Elastic, marshal 1 to 100+ PCs via WS,
  - Machine Specs...,
  - Fairly cheap!
- Powered by Xen a Virtual Machine:
  - Different from Vmware and VPC as uses "para-virtualization" where the guest OS is modified to use special hyper-calls:
  - Hardware contributions by Intel (VT-x/Vanderpool) and AMD (AMD-V).
  - Supports "Live Migration" of a virtual machine between hosts.
- Linux, Windows, OpenSolaris
- Management Console/AP



- Load your image onto S3 and register it.
- Boot your image from the Web Service.
- Open up required ports for your image.
- Connect to your image through SSH.
- Execute you application...



- The use of the cloud provides a number of opportunities:
  - It enables services to be used without any understanding of their infrastructure.
  - Cloud computing works using economies of scale:
    - It potentially lowers the outlay expense for start up companies, as they would no longer need to buy their own software or servers.
    - Cost would be by on-demand pricing.
    - Vendors and Service providers claim costs by establishing an ongoing revenue stream.
  - Data and services are stored remotely but accessible from "anywhere".



- In parallel there has been backlash against cloud computing:
  - Use of cloud computing means dependence on others and that could possibly limit flexibility and innovation:
    - The others are likely become the bigger Internet companies like Google and IBM, who may monopolise the market.
    - Some argue that this use of supercomputers is a return to the time of mainframe computing that the PC was a reaction against.
  - Security could prove to be a big issue:
    - It is still unclear how safe out-sourced data is and when using these services ownership of data is not always clear.
  - There are also issues relating to policy and access:
    - If your data is stored abroad whose policy do you adhere to?
    - What happens if the remote server goes down?
    - How will you then access files?
    - There have been cases of users being locked out of accounts and losing access to data.



## Lower computer costs:

- You do not need a high-powered and high-priced computer to run cloud computing's web-based applications.
- Since applications run in the cloud, not on the desktop PC, your desktop PC does not need the processing power or hard disk space demanded by traditional desktop software.
- When you are using web-based applications, your PC can be less expensive, with a smaller hard disk, less memory, more efficient processor...
- In fact, your PC in this scenario does not even need a CD or DVD drive, as no software programs have to be loaded and no document files need to be saved.



# Improved performance:

- With few large programs hogging your computer's memory, you will see better performance from your PC.
- Computers in a cloud computing system boot and run faster because they have fewer programs and processes loaded into memory...

### Reduced software costs:

- Instead of purchasing expensive software applications, you can get most of what you need for free-ish!
  - most cloud computing applications today, such as the Google Docs suite.
- better than paying for similar commercial software
  - which alone may be justification for switching to cloud applications.



### Instant software updates:

- Another advantage to cloud computing is that you are no longer faced with choosing between obsolete software and high upgrade costs.
- When the application is web-based, updates happen automatically
  - available the next time you log into the cloud.
- When you access a web-based application, you get the latest version
  - without needing to pay for or download an upgrade.

### Improved document format compatibility.

- You do not have to worry about the documents you create on your machine being compatible with other users' applications or OSes
- There are potentially no format incompatibilities when everyone is sharing documents and applications in the cloud.



# Unlimited storage capacity:

- Cloud computing offers virtually limitless storage.
- Your computer's current 1 Tbyte hard drive is small compared to the hundreds of Pbytes available in the cloud.
- Increased data reliability:
  - Unlike desktop computing, in which if a hard disk crashes and destroy all your valuable data, a computer crashing in the cloud should not affect the storage of your data.
    - if your personal computer crashes, all your data is still out there in the cloud, still accessible
  - In a world where few individual desktop PC users back up their data on a regular basis, cloud computing is a datasafe computing platform!



### Universal document access:

- That is not a problem with cloud computing, because you do not take your documents with you.
- Instead, they stay in the cloud, and you can access them whenever you have a computer and an Internet connection
- Documents are instantly available from wherever you are
- Latest version availability:
  - When you edit a document at home, that edited version is what you see when you access the document at work.
  - The cloud always hosts the latest version of your documents
    - as long as you are connected, you are not in danger of having an outdated version



# Easier group collaboration:

- Sharing documents leads directly to better collaboration.
- Many users do this as it is an important advantages of cloud computing
  - multiple users can collaborate easily on documents and projects
- Device independence.
  - You are no longer tethered to a single computer or network.
  - Changes to computers, applications and documents follow you through the cloud.
  - Move to a portable device, and your applications and documents are still available.



## Requires a constant Internet connection:

- Cloud computing is impossible if you cannot connect to the Internet.
- Since you use the Internet to connect to both your applications and documents, if you do not have an Internet connection you cannot access anything, even your own documents.
- A dead Internet connection means no work and in areas where Internet connections are few or inherently unreliable, this could be a deal-breaker.



## Does not work well with low-speed connections:

- Similarly, a low-speed Internet connection, such as that found with dial-up services, makes cloud computing painful at best and often impossible.
- Web-based applications require a lot of bandwidth to download, as do large documents.
- Features might be limited:
  - This situation is bound to change, but today many webbased applications simply are not as full-featured as their desktop-based applications.
    - For example, you can do a lot more with Microsoft PowerPoint than with Google Presentation's web-based offering



#### Can be slow:

- Even with a fast connection, web-based applications can sometimes be slower than accessing a similar software program on your desktop PC.
- Everything about the program, from the interface to the current document, has to be sent back and forth from your computer to the computers in the cloud.
- If the cloud servers happen to be backed up at that moment, or if the Internet is having a slow day, you would not get the instantaneous access you might expect from desktop applications.



# Stored data might not be secure:

- With cloud computing, all your data is stored on the cloud.
  - The questions is How secure is the cloud?
- Can unauthorised users gain access to your confidential data?

### Stored data can be lost:

- Theoretically, data stored in the cloud is safe, replicated across multiple machines.
- But on the off chance that your data goes missing, you have no physical or local backup.
  - Put simply, relying on the cloud puts you at risk if the cloud lets you down.



# HPC Systems:

- Not clear that you can run compute-intensive HPC applications that use MPI/OpenMP!
- Scheduling is important with this type of application
  - as you want all the VM to be co-located to minimize communication latency!

### General Concerns:

- Each cloud systems uses different protocols and different APIs
  - may not be possible to run applications between cloud based systems
- Amazon has created its own DB system (not SQL 92), and workflow system (many popular workflow systems out there)
  - so your normal applications will have to be adapted to execute on these platforms.



- Many of the activities loosely grouped together under cloud computing have already been happening and centralised computing activity is not a new phenomena
- Grid Computing was the last research-led centralised approach
- However there are concerns that the mainstream adoption of cloud computing could cause many problems for users
- Many new open source systems appearing that you can install and run on your local cluster
  - should be able to run a variety of applications on these systems





Thanks for your input



CMA. TCA Srinivasa Prasad +91 947 770 2227 10996tcasp@icmaim.com www.tcasprasad.in

